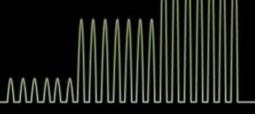
ТΜ New in Generation II: New in Generation LLi & Broadened frequency range × Higher power option × Low level input × Integrated power monitor M NUFERN

Single Frequency, Monolithic, PM Fiber Amplifiers


Gain the Advantage

NuAMP fiber amplifiers simplify the most complex optical amplification, signal gain, and power scaling challenges. Powered by Nufern's double clad fibers, NuAMP devices offer high stability and high power while preserving critical seed laser characteristics. Now offering extended operating wavelengths, the compact, monolithic package integrates easily into your program, reducing costs and time to completion.

www.nufern.com

Optical Attributes

- High signal isolation & amplification fidelity
- Very narrow linewidth (few kHz) available
- Low RIN, high SNR, high PER
- High beam quality, near diffraction limited
- High open loop stability

Mechanical & Electrical Attributes

- Easy controls; Quick start
- High immunity to shock and vibration
- Simple, fast & effective protection system
- Low power consumption, high efficiency

Gen II Feature Matrix

	Gen II	New Benefits
Output Power	2W, 5W, 10W, 15W, 40W	Higher power option.
Signal Input Power	> 1 mW <i>or</i> > 50 mW	Compatible with more low-cost seed sources.
Input Power Loss Protection	Improved	Lowest risk of catastrophic failure.
Output Power Monitor	Integrated	Enables low-cost closed loop control.
Operating Wavelength	1040–1110 nm <i>or</i> 1532–1570 nm	New extended wavelength range in both the 1.0 & 1.5 μm regimes.
Output Isolation	Various options available	Same application flexibility.
Back Reflection Protection	Improved	Lowest risk of catastrophic failure.
Diode Drivers	Integrated	Reduces cost and complexity of lab.
SBS at Rated Power	Reduced SBS	Lowest noise measurements possible.
PC Control	Optional via USB	Easier to set up and use.
E-stop & Key Switch	Included with controller unit	Easier, safer installations.
Remote Interlock	Standard	Easier, safer installations.
Armored Output Cable	Standard	More accidental damage tolerance.
Cooling	Benchtop, water, <i>or</i> air	Greater application flexibility.

Application

The MIT-Harvard Center for Ultracold Atoms (CUA), routinely uses fiber amplifiers to trap quantum degenerate gases in order to study the interaction effects on the evolution of these clouds. Figure 1 shows a time of flight picture of a Bose-Einstein Condensate of ⁴¹K that was loaded into an optical dipole trap. This trap was formed by a 5 W laser beam produced from a Nufern fiber amplifier and has a beam waist of 150 µm. Note that the temperature of this cloud was about 400 nK and was held in the optical trap for ~2 s before imaging. This imposes an extreme stability requirement on the trapping laser beams in order for the heating rate to be suppressed below a few nanokelvin per seconds.

In the experiments, the interaction between atoms was manipulated using Feshbach resonances which were induced by exposing the trapped atoms to a uniform magnetic field. An example of a Feshbach resonance between two isotopes of potassium, ⁴¹K and ⁴⁰K is shown in Figure 2. The trapping potential was created by two 100 μ m crossed laser beams at λ =1064 nm using a 40 W Nufern fiber amplifier.

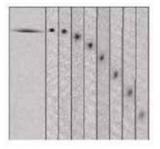


Figure 1 - Time of flight expansion of a Bose Condensate (BEC). Images of the BEC are taken in 2 ms intervals after suddenly turning off the optical trap and allowing the atoms to freely expand.

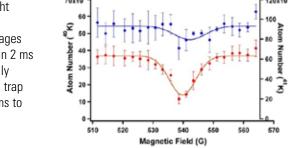


Figure 2 - Feshbach scan of ⁴¹K-⁴⁰K bose-fermi mixture loaded into an optical trap. Blue and red data points represent ⁴¹K and ⁴⁰K atom number after 3 s of hold time in the dipole trap exposed to a uniform external magnetic field.

