APD Photoreceivers

Features

- InGaAs/InAlAs single-carrier multiplication APD (SCM-APD)
- Integrated low-noise transimpedance amplifier
- 950–1700nm spectral response
- · High responsivity
- Low excess noise
- · High bandwidth
- · High gain
- -5 to +75°C operating case temperature

Applications

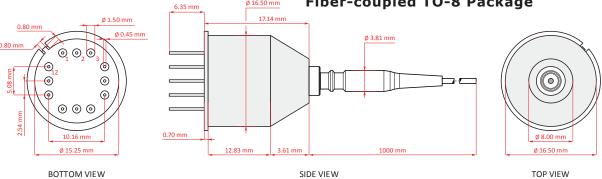
- Range finding
- LADAR/LIDAR
- Fluorescence measurements
- Free-space optical communication systems
- Spectroscopy, electrophoresis, chromatography
- Ultra-fast pulse and transient measurements

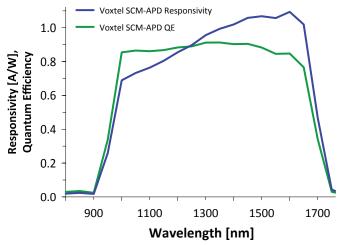
SILETZ BSI™ APD Photoreceivers

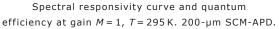
MHz- and GHz-Class Receivers with High-Gain, Low Excess Noise NIR Single-Carrier Multiplication APDs (SCM-APDs)

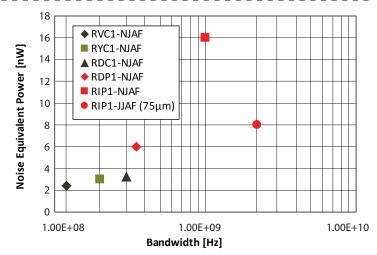
Model RDP1-NJAF: 200μm APD, 350MHz Model RIP1-NJAF: 200μm APD, 1GHz Model RIP1-JJAF: 75μm APD, 2.2GHz

Model R2P1-JCAA: 75µm APD, 1.5GHz TO-46


Voxtel offers high-sensitivity photoreceivers based on its Siletz single-carrier multiplication APDs (SCM-APDs) in the RXP-1000 product series. High bandwidth as well as 75- μ m and 200- μ m optical areas make these ideal for laser rangefinders, laser designators, free space optical communication, optical instrumentation, and LADAR/LIDAR.


Voxtel's VFP-1000 Series of Siletz™ SCM-APDs integrates low-noise with transimpedance amplifiers (TIAs). Voxtel's SCM-APDs offer extremely low excess-noise NIR-SWIR APDs, allowing the receiver to operate at high avalanche gain, boosting the optical signal over the amplifier noise level without the degrading effects of avalanche-induced excess noise. These photoreceivers are the most sensitive receivers available on the market today. A single-stage thermoelectric cooler (TEC) is included to eliminate temperature-induced gain variations and allow optimal performance over the range of application environments.

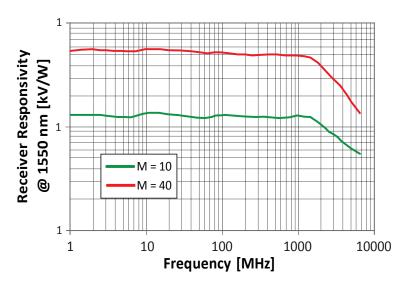

Standard fiber pigtail options for the 75 μ m receivers include 62.5/125 (0.37NA) graded-index and 105/125 (0.37NA) step-index multi-mode fibers; other fiber options can be custom ordered. Optionally available with the photoreceivers are Support Electronics Modules, which provide power conditioning and TEC control.



Siletz™ Series APD Photoreceivers Detector active area centered in package to ±0.1mm tolerance Pinout 2.39 ±0.15mm **TO-46 TO-8** 1) DOUT نصب 6.65 ±0.14mm 2) VDD **Package Package** 3) V+ APD 0.38 ±0.03mm 4) DOUT B 5) GND 6.35 mm Ø 5.31 mm TOP VIEW 2.70 Sense+ (B/C) with cap header only 1.37 TSense Ø 4.22 TSense- (E) 0.77 N/C Ø 1.50 mm TEC-5.38 0.80 mn N/C Ø 2.54 4.70 Ø 0.45 mm $\odot \odot \odot$ Pinout (from bottom) \circ (\circ) **1**2 憊 82 1) Gnd 7) Out-Gnd 0 0 8) Gnd 2) +APD • 3) TEC+ 9) Out+ 000 4) TSense- 10) V_{CC} +3.3V 5) TEC-11) N/C 2.54 6) TSense+ 12) N/C Ø 15.25 mm SIDE VIEW **BOTTOM VIEW** with cap **BOTTOM VIEW** Fiber-coupled TO-8 Package Ø 16.50 mm

Standard receiver configurations with typical NEP valves and bandwidths

Model RDP1-NJAF


Siletz™ Series APD Photoreceiver 200µm, 350MHz

Specifications

Parameter	Min	Typical	Max	Units	
Spectral Range, λ	950	1000-1600	1750	nm	
Active Diameter		200		μm	
Bandwidth		350		MHz	
APD Operating Gain, M	1	10-30	40		
Receiver Responsivity at <i>M</i> =40		400/560		kV/W at 1064/1550 nm	
Noise Equivalent Power at M=40		10/8		nW at 1064/1550 nm	
Low Frequency Cutoff ⁱ		30		kHz	
APD Breakdown Voltage, V_{BR}	70	74	80	V @ T = 298 K	
TEC Δ <i>T</i>			40	K @ T = 298 K	
TEC Supply			1.8/1.9	A/V	
Temp Sensing Diode	0.48	0.50	0.51	V	
Voltage and ΔV/K ⁱⁱ		-2.18 mV/K			
TIA Power		25		mA @ 3.3 V	
Output Impedance ⁱⁱⁱ	60	75	90	Ω	
Overload/Saturation Poweriv		100		μW	
Maximum Instantaneous			5	mW	
Input Power ^v					
Window Thickness	0.76	0.94	1.12	mm	

i -3dB, 40µA input

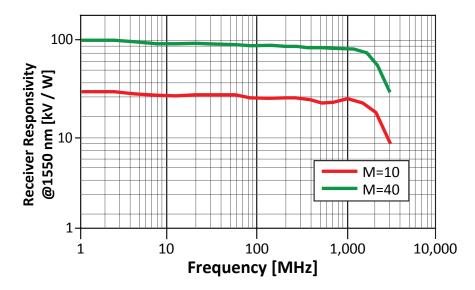
 $^{^{\}rm v}$ 10ns, 1064nm signal at a 20Hz PRF with an APD multiplication gain of M=10

 $^{^{}ii}$ Sourcing 10 $\mu\text{A},~\text{T=}298K$

 $^{^{}iii}$ Single-ended; 150 Ω differential

 $^{^{\}text{iv}}$ 1550nm signal with an APD multiplication gain of M=10

Model RIP1-NJAF


Siletz™ Series APD Photoreceiver 200µm, 1GHz

Specifications

Parameter	Min	Typical	Max	Units	
Spectral Range, λ	950	1000-1600	1750	nm	
Active Diameter		200		μm	
Bandwidth		1		GHz	
APD Operating Gain, M	1	10-30	40		
Receiver Responsivity at $M=10^{i}$		32/40		kV/W at 1064/1550 nm	
Noise Equivalent Power at M=40		20/16		nW at 1064/1550 nm	
Low Frequency Cutoff ⁱⁱ		65		kHz	
APD Breakdown Voltage, V_{BR}	70	74	80	V @ T = 298 K	
TEC Δ <i>T</i>			40	K @ T = 298 K	
TEC Supply			1.8/1.9	A/V	
Temp Sensing Diode	0.48	0.50	0.51	V	
Voltage and ΔV/K ⁱⁱⁱ		-2.18 mV/K			
TIA Power		25		mA @ 3.3 V	
Output Impedance ^{iv}	42.5	50	57.5	Ω	
Overload/Saturation Power ^v		100		μW	
Max Instantaneous Input Power ^{vi}			5	mW	
Window Thickness	0.76	0.94	1.12	mm	
Window Transparency		95/98%		1064/1550 nm	

i 10MHz, -40dBm signal

 $^{^{\}rm vi}$ 10ns, 1064nm signal at a 20Hz PRF with an APD multiplication gain of M=10

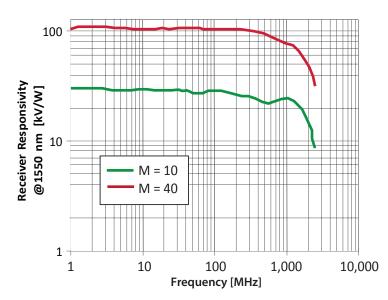
ii 13dB, 40µA input

iii Sourcing 10μΑ, T=298K

 $^{^{}iv}$ Single-ended; 100Ω differential

 $^{^{\}rm v}$ 1550nm signal with an APD multiplication gain of M=10

Model RIP1-JJAF


Siletz™ Series APD Photoreceiver 75µm, 2.2GHz

Specifications

Parameter	Min	Typical	Max	Units	
Spectral Range, λ	950	1000-1600	1750	nm	
Active Diameter		75		μm	
Bandwidth		2.2		GHz	
APD Operating Gain, M	1	10-30	40		
Receiver Responsivity at <i>M</i> =40		88/115		kV/W at 1064/1550 nm	
Noise Equivalent Power at M=40		10/8		nW at 1064/1550 nm	
Low Frequency Cutoff ⁱ		65		kHz	
APD Breakdown Voltage, V_{BR}^{II}	70	74	80	V	
TEC Δ <i>T</i>			40	K @ T = 298 K	
TEC Supply			1.8/1.9	A/V	
Temp Sensing Diode Voltage and ΔV/K ⁱⁱⁱ	0.48	0.50 -2.18 mV/K	0.51	V	
TIA Power		25	mA @ 3.3 V		
Output Impedance ^{iv}	42.5	50	57.5	Ω	
Overload/Saturation Power ^v		100		μW	
Max Instantaneous Input Power ^{vi}			1	mW	
Window Thickness	0.76	0.94	1.12	mm	
Window Transparency		95/98%		1064/1550 nm	

i-3dB, 40µA input

 $^{^{\}rm vi}$ 10ns, 1064nm signal at a 20Hz PRF with an APD multiplication gain of M=10

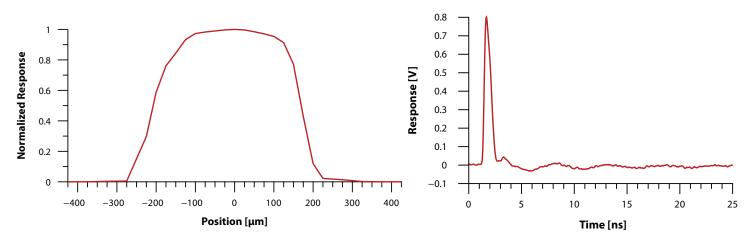
ii *T*=295K

iii Sourcing 10μΑ, T=298K

 $^{^{\}text{iv}}$ Single-ended; 100Ω differential

 $^{^{\}rm v}$ 1550nm signal with an APD multiplication gain of \emph{M} =10

Model R2P1-JCAA


Siletz™ Series APD Photoreceiver 75μm, 1.5GHz, Ball-Lens-Coupled TO-46

Specifications

Parameter	Min	Typical	Max	Units	
Spectral Range, λ	950	1000-1600	1750	nm	
Active Diameter		75		μm	
Effective Diameter		300			
Bandwidth		1.5		GHz	
APD Operating Gain, M	1	10-30	40		
Receiver Responsivity @ <i>M</i> =10 ⁱ		75/93		kV/W at 1064/1550 nm	
Noise Equivalent Power @ M=40		14/12		nW at 1064/1550 nm	
Low Frequency Cutoff ⁱⁱ		30		kHz	
APD Breakdown Voltage, V_{BR}	70	74	80	V @ T = 298 K	
$\Delta V_{BR}/TEC \Delta T$		29		K @ T = 298 K	
TIA Power		20		mA@3.3V	
Output Impedance ⁱⁱⁱ	40	50	60	Ω	
Overload/Saturation Poweriv		100		μW	
Max Instantaneous Input Power ^v			1	mW	
Window Thickness	0.76	0.94	1.12	mm	
Window Transparency		95/98%		1064/1550 nm	

i 10MHz, -40dBm signal

 $^{^{}m v}$ 10ns, 1064nm signal at a 20Hz PRF with an APD multiplication gain of \emph{M} =10

Voxtel, Inc., 15985 NW Schendel Avenue, #200, Beaverton, OR 97006, www.voxtel-inc.com, T 971.223.5646, F 503.296.2862

Voxtel Literature No. RxP1-xJAF, Version date: 06/2012 ©

Voxtel makes no warranty or representation regarding its products' specific application suitability and may make changes to the products described without notice.

ii -3dB, 40µA input

 $^{^{\}text{iii}}$ Single-ended; 100Ω differential

 $^{^{}m iv}$ 1550nm signal with an APD multiplication gain of M=10

Siletz BSI™

Ordering Information For VFP-1000 Series APD Products

R	-	P1	-	-	-	-
Device Type	Amplifier	Detector	Diameter	Package Option	Lens Option	Revision
R=Photoreceiver	D=580MHz TIA I=2.5GHz TIA 2=1.7GHz TIA	P=Siletz SCM-APD	J=75μm N=200μm	C=TO-46 J=TO-8 with 1-Stage TEC	A=Flat Window Q=MM 62.5/125μm R=MM 105/125μm S=MM 200/125μm	

Not all combinations of product features are available. Please contact Voxtel for specific ordering information and parts availability.

Caution During APD Operation

If an APD is operated above its breakdown voltage without some form of current protection, it can draw enough current to permanently damage the device. To guard against this, the user can add either a protective resistor to the bias circuit or a current-limiting circuit in the supporting electronics.

The breakdown voltage of an APD is dependent upon its temperature: the breakdown voltage decreases when the APD is cooled. Consequently, a reverse bias operating point that is safe at room temperature may put the APD into breakdown at low temperature. The approximate temperature dependence of the breakdown voltage is published in the spec sheet for the part, but caution should be exercised when an APD is cooled.

Low-noise readout circuits usually have high impedance, and an unusually strong current pulse from the APD could generate a momentary excessive volt-

age that is higher than the readout's supply voltage, possibly damaging the input to the amplifier. To prevent this, a protective circuit should be connected to divert excessive voltage at the inputs to a power supply voltage line.

As noted in the specification, another consideration is that the APD gain changes depending on temperature. When an APD is used over a wide temperature range, it is necessary to use some kind of temperature compensation to obtain operation at a stable gain. This can be implemented as either regulation of the applied reverse bias according to temperature, feedback temperature control using a thermoelectric cooler (TEC) or other refrigerator, or both.

Upon request, Voxtel will gladly assist customers in implementing the proper controls to ensure safe and reliable operation of APDs in their system.

