Submounted APD Die

DESCHUTES BSI™

Submounted APD Die

Reduced-noise Avalanche Photodiode (R-APD) w/Submount

75

Model VFC1-xBZA Series Submounted Die

Backside-illuminated operation of the Deschutes BSITM reduced-excess-noise avalanche photodiode (R-APD) provides both higher responsivity and lower capacitance than competing frontside-illuminated APDs. The R-APD is custom-engineered for reduced excess noise, which allows this APD to achieve higher sensitivity, better signal-to-noise (SNR) performance, and lower bit error rates (BERs) than conventional telecom APDs.

In comparison to conventional telecom InGaAs/InP APDs, which have an excess noise characterized by keff = 0.4, Voxtel's Deschutes BSI $^{\text{TM}}$ InGaAs/InAlAs R-APDs, characterized by keff = 0.2, have 40% less excess noise, which allows for lower shot noise over the operating gain of the R-APD. The increased sensitivity of the R-APD improves system cost, size, weight, and power (CSWAP) by reducing computational burden and laser power, while increasing standoff range as used in a laser range-finding system.

For ease of integration, these APD die are provided on a ceramic submount with a co-mounted temperature sensor. Smaller footprint submounts without the temperature sensor are available upon request.

Features

- Low-capacitance high sensitivity back-side illuminated (BSI) design
- 950-1700nm response
- Reduced excess noise design, (R-APD) from conventional APDs
- Operation up to a multiplication gain of M=20
- Custom devices available upon request

Applications

- Free-space optical communications
- · Laser range finding
- Optical time domain reflectometry
- Optical coherence tomography
- Fluorescence measurements, spectroscopy, chromatography and electrophoresis
- Telecommunications
- LADAR/LIDAR

Deschutes BSI™ Series Near-Infrared APDs

Spectral responsivity and quantum efficiency of 200µm APD @ 298K

Excess noise of the Deschutes BSI R-APD, $k \sim 0.2$

Effects of temperature on dark current and breakdown voltage of a $200\mu m$ Deschutes BSI R-APD at M=10

Deschutes BSI™ VFC-1000 Series

Submounted APD Die

MODEL VFC1-EBZA

VFC-1000 Series Near-Infrared R-APD 30-micron , 5.0GHz R-APD

Specifications

Parameter	Min	Typical	Max	Units
Spectral Range, λ	950	1000-1600	1750	nm
Active Diameter		30		μm
Bandwidth		6.0		GHz
APD Operating Gain, M	1	10	20	
Receiver Responsivity at <i>M</i> =1	.66 .91	.73 1.01	.78 1.04	A/W λ=1064nm λ=1550nm
Excess Noise Factor, F(M,k)		3.4 / 4.3		M=10, M=15
Noise Spectral Density @ <i>M</i> =10		.37		pA/Hz ^{1/2}
Dark Current @ M=1 ⁱ	0.80	1.08	1.25	nA
Total Capacitance ⁱⁱ		35		fF
Bandwidth		5.0		GHz
Breakdown Voltage, $V_{BR}^{ m iii}$	44	49	55	V
$\Delta V_{BR}/\Delta T$	30	34	39	mV/K
Temperature Sensing Diode Voltage and $\Delta V/K^{i\nu}$	0.48	0.50 -2.18 mV/K	0.51	V
Maximum Instantaneous Input Power ^v			125	μW

ⁱ Gain normalized from M=10, T=298K

 $^{^{\}rm v}$ 10ns, 1064nm signal at a 20Hz PRF with an APD multiplication gain of M=10

ii *M*>3

iii *T*=298K; *I_{dark}*>0.1 mA

 $^{^{}iv}$ Sourcing 10 μ A, T=298K

MODEL VFC1-JBZA

VFC-1000 Series Near-Infrared R-APD 75-micron, 2.5GHz R-APD

Specifications

Parameter	Min	Typical	Max	Units
Spectral Range, λ	950	1000-1600	1750	nm
Active Diameter		75		μm
APD Operating Gain, M	1	10	20	
Responsivity at $M=1$.66 .91	.73 1.01	.78 1.04	A/W λ=1064nm λ=1550nm
Excess Noise Factor, <i>F(M,k)</i>		3.4 4.4		M=10 M=15
Noise Spectral Density @ <i>M</i> =10		0.48		pA/Hz ^{1/2}
Dark Current @ M=1 ⁱ	0.8	1.9	2.5	nA
Total Capacitance ⁱⁱ		0.34		pF
Bandwidth	2.0	2.5	3.0	GHz
Breakdown Voltage, <i>V_{BR}</i> iii	44	49	55	V
$\Delta V_{BR}/\Delta T$	30	34	39	mV/K
Temperature Sensing Diode Voltage and $\Delta V/K^{iv}$	0.48	0.50 -2.18mV/K	0.51	V
Maximum Instantaneous Input Power ^v			1	mW

 $^{^{\}rm i}$ Gain normalized from M=10, T=298K

 $^{^{\}rm v}$ 10ns, 1064nm signal at a 20Hz PRF with an APD multiplication gain of M=10

ii *M*>3

iii *T*=298K; *I_{dark}*>0.1mA

iv Sourcing 10μA, T=298K

Deschutes BSI™ VFC-1000 Series

Submounted APD Die

MODEL VFC1-NBZA

VFC-1000 Series Near-Infrared R-APD 200-micron, 550MHz R-APD

Specifications

Parameter	Min	Typical	Max	Units
Spectral Range, λ	950	1000-1600	1750	nm
Active Diameter		200		μm
APD Operating Gain, M	1	10	20	
Responsivity at <i>M</i> =1	.66 .91	.73 1.01	.78 1.04	A/W λ=1064nm λ=1550nm
Excess Noise Factor, $F(M,k)$		3.4 4.3		M=10 M=15
Noise Spectral Density @ <i>M</i> =10		0.94		pA/Hz ^{1/2}
Dark Current @ M=1 ⁱ	6	8.1	10.0	nA
Total Capacitance ⁱⁱ		1.47		pF
Bandwidth	250	550	700	MHz
Breakdown Voltage, <i>V_{BR}</i> iii	44	49	55	V
$\Delta V_{BR}/\Delta T$	30	34	39	mV/K
Temperature Sensing Diode Voltage and $\Delta V/K^{iv}$	0.48	0.50 -2.18mV/K	0.51	V
Maximum Instantaneous Input Power ^v			5	mW

ⁱ Gain normalized from *M*=10, T=298K

 $^{^{\}rm v}$ 10ns, 1064nm signal at a 20Hz PRF with an APD multiplication gain of M=10

ii M>3

iii *T*=298K; *I_{dark}*>0.1mA

 $^{^{}iv}$ Sourcing 10 $\mu A,\ T=298 K$