Deschutes BSI™ RxC-1000 Series

APD Photoreceivers

DESCHUTES BSI™ APD Photoreceivers

MHz-Class Receivers with High-Responsivity, Back-Side-Illuminated NIR InGaAs/InAlAs APDs

Model RDC1-NJAF: 200µm APD, 300MHz Model RDC1-JJAF: 75µm APD, 580MHz Model RYC1-NJAF: 200µm APD, 200MHz Model RVC1-NJAF: 200µm APD, 120MHz

Voxtel's RxC-1000 Series high-sensitivity photoreceivers integrate our Deschutes BSI[™] backside-illuminated avalanche photodiodes (APDs) with low-noise, high-bandwidth transimpedance amplifiers (TIAs). The backside-illuminated configuration of the Deschutes BSI[™] detectors provides both higher responsivity and lower capacitance than competing frontsideilluminated APDs. The R-APD is custom-engineered for reduced excess noise, which allows this photoreceiver to achieve higher sensitivity, better signal-to-noise performance, and lower bit error rate (BER) than conventional telecom APDs. A single-stage thermoelectric cooler (TEC) is included to stabilize temperature.

The RxC-1000 Series of photoreceivers comes standard with a largearea and low-noise 200 μ m APD, but are also available with a smaller 75 μ m APD, which provides increased bandwidth and sensitivity. Contact Voxtel for more information on this and other options.

Standard fiber pigtail options for the 75µm receivers include 62.5/125 (0.37NA) graded-index and 105/125 (0.37NA) step-index multi-mode fibers; other fiber options can be custom ordered. Optionally available with the photoreceivers are Support Electronics Modules, which provide power conditioning and TEC control.

V O X T E L O P

Features

- Low-noise NIR InGaAs avalanche photodiode
- $k_{\rm eff} \approx 0.20$, resulting in low excess noise
- 950-1700 nm response
- Low dark current, low excess noise combine for superior sensitivity not achieved with contemporary APDs
- Custom APDs available on request

Applications

- Free-space optical communications
- Laser range finding
- Optical time domain reflectometry
- Optical coherence tomography
- Fluorescence measurements, spectroscopy, chromatography and electrophoresis
- Telecommunications
- LADAR/LIDAR

Voxtel, Inc., 15985 NW Schendel Avenue, #200, Beaverton, OR 97006, www.voxtel-inc.com, T 971.223.5646, F 503.296.2862 Voxtel Literature No. RxC1-xJAF, Version date: 06/2012 © Voxtel makes no warranty or representation regarding its products' specific application suitability and may make changes to the products described without notice.

APD Photoreceivers

Deschutes BSI™ RxC-1000 Series

Deschutes BSI™ Series Near-Infrared APDs

Voxtel, Inc., 15985 NW Schendel Avenue, #200, Beaverton, OR 97006, www.voxtel-inc.com, T 971.223.5646, F 503.296.2862 Voxtel Literature No. RxC1-xJAF, Version date: 06/2012 © Voxtel makes no warranty or representation regarding its products' specific application suitability and may make changes to the products described without notice.

APD Photoreceivers

MODEL RDC1-JJAF

Deschutes BSI™ Series NIR Photoreceiver 580MHz with 75µm Backside-Illuminated APD

Specifications

Parameter	Min	Typical	Max	Units	
Spectral Range, λ	950	1064-1600	1750	nm	
Active Diameter		75		μm	
Bandwidth		200		MHz	
APD Operating Gain, M	1	15	20		
Receiver Responsivity at $M=10^{10}$		100/140		kV/W at 1064/1550 nm	
Noise Equivalent Power at $M=20$		3.1/2.4		nW at 1064/1550 nm	
Low Frequency Cutoff		30		kHz	
APD Breakdown Voltage, V _{BR}	45	50	55	V @ 295 K	
ΤΕС ΔΤ		40		K @ 295 K	
TEC Supply			1.8/1.9	A/V	
Temp Sensing Diode	0.49	0.50	0.51	V	
Voltage and $\Delta V/K^{ii}$	0.40	-2.18 mV/K	0.51	V	
TIA Power		20		mA @ 3.3 V	
Output Impedance ⁱⁱⁱ		75	90	Ω	
Overload/Saturation Power ^{iv}		100		μW	
Maximum Instantaneous			1	m\//	
Input Power ^v				TITVV	
Window Thickness	0.76	0.94	1.12	mm	
Window Transparency		95/98%		1064/1550 nm	

ⁱ 10MHz, -40dBm signal

ⁱⁱ Sourcing 10µA, *T*=298K

 $^{\text{iii}}$ Single-ended; 100 Ω differential

^{iv} 1550nm signal with an APD multiplication gain of *M*=10
 ^v APD multiplication gain of *M*=10 with a 10ns 1064nm signal at a 20Hz PRF

Linearity of Response: RDC1-JJAC 580-MHz

0

XTEL

Linearity of response in the Deschutes BSI™ photoreceiver, model RDC1-JJAF. 20-MHz modulated signal.

Voxtel, Inc., 15985 NW Schendel Avenue, #200, Beaverton, OR 97006, www.voxtel-inc.com, T 971.223.5646, F 503.296.2862 Voxtel Literature No. RxC1-xJAF, Version date: 06/2012 ©

Voxtel makes no warranty or representation regarding its products' specific application suitability and may make changes to the products described without notice.

MODEL RDC1-NJAF

Deschutes BSI™ Series NIR Photoreceiver 300MHz with 200µm Backside-Illuminated APD

Specifications

Parameter	Min	Typical	Max	Units	
Spectral Range, λ	950	1064-1600	1750	nm	
Active Diameter		200		μm	
Bandwidth		300		MHz	
APD Operating Gain, M	1	15	20		
Receiver Responsivity at $M=10^{10}$		100/140		kV/W at 1064/1550 nm	
Noise Equivalent Power at $M=20$		4.1/3.2		nW at 1064/1550 nm	
Low Frequency Cutoff		30		kHz	
APD Breakdown Voltage, V _{BR}	45	50	55	V @ 295 K	
ΤΕС ΔΤ		40		K @ 295 K	
TEC Supply			1.8/1.9	A/V	
Temp Sensing Diode	0.49	0.50	0.51	V	
Voltage and $\Delta V/K^{ii}$	0.40	-2.18 mV/K	0.51	V	
TIA Power		20		mA @ 3.3 V	
Output Impedance ⁱⁱⁱ		75	90	Ω	
Overload/Saturation Power ^{iv}		100		μW	
Maximum Instantaneous			E	m\\/	
Input Power ^v			5	111VV	
Window Thickness	0.76	0.94	1.12	mm	
Window Transparency		95/98%		1064/1550 nm	

ⁱ 10MHz, -40dBm signal

- ⁱⁱ Sourcing 10µA, *T*=298K
- $^{\text{iii}}$ Single-ended; 100 Ω differential
- ^{iv} 1550nm signal with an APD multiplication gain of *M*=10
 ^v APD multiplication gain of *M*=10 with a 10ns 1064nm signal at a 20Hz PRF

Linearity of Response: RDC1-NJAC 300-MHz

Linearity of response in the Deschutes BSI™ photoreceiver, model RDC1-NJAF. 20-MHz modulated signal.

APD Photoreceivers

MODEL RYC1-NJAF

Deschutes BSI[™] Series NIR Photoreceiver 200MHz with 200µm BSI APD

Specifications

Parameter	Min	Typical	Max	Units	
Spectral Range, λ	950	1000-1600	1750	nm	
Active Diameter		200		μm	
Bandwidth	200			MHz	
APD Operating Gain, M	1	10-15	20		
Receiver Responsivity at $M=10^{i}$		80/100		kV/W at 1064/1550 nm	
Noise Equivalent Power at $M=20$		4.0/3.1		nW at 1064/1550 nm	
Low Frequency Cutoff ⁱⁱ		30		kHz	
APD Breakdown Voltage, V _{BR}	45	50	55	V @ T = 295 K	
ΤΕС Δ <i>Τ</i>			40	K @ T = 295 K	
TEC Supply			1.8/1.9	A/V	
Temp Sensing Diode, Voltage and ΔV/K ⁱⁱⁱ	0.48	0.50 -2.18 mV/K	0.51	V	
TIA Power		25		mA @ 5V	
Output Impedence ^{iv}	40	50	60	Ω	
Overload/Saturation Power ^v	20	35		μW	
Max Instantaneous Input Power ^{vi}			5	mW	
Window Thickness	0.76	0.94	1.12	mm	
Window Transparency		95/98%		1064/1550 nm	

ⁱ 10MHz, -40dBm signal

ⁱⁱ -3dB, 1µA input

ⁱⁱⁱ Sourcing 10µA, *T*=298K

 $^{i\nu}$ Single-ended; 100Ω differential

 $^{\rm v}$ 1550nm signal with APD multiplication gain of $M{=}10$

vi APD multiplication gain of *M*=10 with a 10ns 1064nm signal at 20Hz PRF

MODEL RVC1-NJAF

Deschutes BSI[™] Series NIR Photoreceiver 120MHz with 200µm Backside Illuminated APD

Specifications

Parameter	Min	Typical	Max	Units	
Spectral Range, λ	950	1000-1600	1750	nm	
Active Diameter		200		μm	
Bandwidth		120		MHz	
APD Operating Gain, M	1	15	20		
Receiver Responsivity at $M=10^{10}$		272/340		kV/W at 1064/1550 nm	
Noise Equivalent Power at $M=20$		3.1/2.4		nW at 1064/1550 nm	
Low Frequency Cutoff		7	25	kHz	
APD Breakdown Voltage, V _{BR}	45	50	55	V @ 295 K	
ΤΕС ΔΤ		40		K @ 295 K	
TEC Supply			1.8/1.9	A/V	
Temp Sensing Diode Voltage and $\Delta V/K^{ii}$	0.48	0.50 -2.18 mV/K	0.51	V	
TIA Power	22	28	36	mA @ 3.3 V	
Output Impedence ⁱⁱⁱ	50	67	80	Ω	
Overload/Saturation Power ^{iv}	100	300		μW	
Max Instantaneous Input Power ^v			5	mW	
Window Thickness	0.76	0.94	1.12	mm	
Window Transparency		95/98%		1064/1550 nm	

ⁱ 10MHz, -40dBm signal

ⁱⁱ Sourcing 10µA, *T*=298K

 $^{\rm iii}$ Single-ended; 100 Ω differential

 iv 1550nm signal with an APD multiplication gain of M=10

V APD multiplication gain of M=10 with a 10ns 1064nm signal at a 20Hz PRF

Voxtel, Inc., 15985 NW Schendel Avenue, #200, Beaverton, OR 97006, www.voxtel-inc.com, T 971.223.5646, F 503.296.2862 Voxtel Literature No. RxC1-xJAF, Version date: 06/2012 © Voxtel makes no warranty or representation regarding its products' specific application suitability and may make changes to the products described without notice.

Ordering Information For RxC-1000 Series APD Products

R	-	C1	-	J	-	F
Device Type	Amplifier	Detector	Diameter	Package Option	Lens Option	Revision
R=Photoreceiver	R=Photoreceiver D=580MHz TIA	C=BSI	1-75	J=TO-8 with	A Elet Mindow	F=40°C ΔT
		Deschutes APD	Deschutes APD	1-Stage TEC	A=Flat Window	1-Stage TEC
Y=250MHz TIA		N. 000		L=Single-mode		
	N=200µm		(SM) 7µm			
V=160MHz TIA				P=Multi-mode		
				(MM) 50/125µm		
					Q=MM 62.5/125µm	
					R=MM 105/125µm	

Not all combinations of product features are available. Please contact Voxtel for specific ordering information and parts availability.

*Receiver bandwidth depends on APD diameter and capacitance.

Caution During APD Operation

If an APD is operated above its breakdown voltage without some form of current protection, it can draw enough current to permanently damage the device. To guard against this, the user can add either a protective resistor to the bias circuit or a current-limiting circuit in the supporting electronics.

The breakdown voltage of an APD is dependent upon its temperature: the breakdown voltage decreases when the APD is cooled. Consequently, a reverse bias operating point that is safe at room temperature may put the APD into breakdown at low temperature. The approximate temperature dependence of the breakdown voltage is published in the spec sheet for the part, but caution should be exercised when an APD is cooled.

Low-noise readout circuits usually have high impedance, and an unusually strong current pulse from the APD could generate a momentary excessive voltage that is higher than the readout's supply voltage, possibly damaging the input to the amplifier. To prevent this, a protective circuit should be connected to divert excessive voltage at the inputs to a power supply voltage line.

As noted in the specification, another consideration is that the APD gain changes depending on temperature. When an APD is used over a wide temperature range, it is necessary to use some kind of temperature compensation to obtain operation at a stable gain. This can be implemented as either regulation of the applied reverse bias according to temperature, feedback temperature control using a thermoelectric cooler (TEC) or other refrigerator, or both.

Upon request, Voxtel will gladly assist customers in implementing the proper controls to ensure safe and reliable operation of APDs in their system.

